Stanford Mathematics Department
Math 205A Lecture Supplement #5
Riesz Representation for L? (u)

Here (X, A, 1) is any measure space and 1 < p < 0o, 1 < ¢ < oo are “conjugate

exponents,” meaning that
() Lyl
* —+-=1,
P 4
where of course we take = = 0. £7(u) will here, for 1 < p < oo, denote

the real-valued A-measurable functions f such that i | f|? du < oo, equipped

with the seminorm
1/p
11 = ([ 1 aw) ™,
X

and £(u) denotes the set of p-essentially bounded real-valued functions f
(i.e. the A-measurable functions f : X — R such that there is A € (0, 00) with
|| <A u-a.e.) and we let

[ flloo = 1inf{A € (0,00) : | f(x)| < A for u-a.e. x € X }.

In this section we discuss the dual space (L?(u))* of L? (). Thus (L?(p))*
is the set of bounded linear functionals F on L?(u), so F € (L?(w))* means
that F : L? () — Ris a linear map with || F|| = SUP| £y,<1 |F(f)] < oc.

To begin, recall the Holder inequality

/X\fg| di < 1 flplgle < oo, f€LP(n). g€ L(p).

so if we define

Tg(f)=/ngdu, feL?(u),

where f denotes the L? class of f € £7 () (= {h:h = f a.e.in X}), then T}
is a bounded linear map of L? () into R; thatis g € L9(n) = Ty € (LP(n))*.
Notice that we also have linearity in g; that is if g1, g2 € L9(u) and A, € R
then T, ¢ +¢20, = €1Tg, + ¢2Tg,. Thus map

(k) T:g— T,

defines a linear map L?(u) — (L?(n))*. The following Riesz theorem claims
that 7, so defined, is an isometric isomorphism of L7 (1) onto (L?(u))* pro-
vided that in the case p = 1 we make the additional assumption that u is
o-finite.
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Theorem (Riesz Representation for L?.) Ler 1 < p < oo, and ler (X, A, i)
be any measure space for p # 1 and (x, A, i) be any o-finite measure space in the
case p = 1, and let q be the exponent conjugate to p as in (x). Then the map T
in (xx) is an isometric isomorphism of L1(n) onto the dual space (L?())* of
LP(p).

Proof: It was shown in Q.6 of hw8 that, under the conditions stated in the
above theorem, T defined as in (#x) is an isometry of L9(u) into (L?(u))*
(i.e. that ||| = llgllq where ||l = supy oy 1Te (f)D)-

Thus we merely have to prove that T is onto. That is for any given bounded
linear functional F : L?(j) — R we have to prove there isa g € L7(p) with
F = Tg. So assume a linear F : L? () — R is given with || F| < oo, where as
usual | F| = SUP| £|,=1 |F(f)]. We consider cases, beginning with:

Case 1: (X) < oco. In this case we define v : A — R by
v(A) = F(Xa).

where X4 denotes the indicator function of A and f as usual denotes the
LP(u) class of a function f € £P(un). We claim that v is a signed mea-
sure. To check this, first observe that X = 0, the zero class in L? (), and
hence F(Xg) = 0, so v(®) = 0. Also, if Ay, A, ... are p.w.d. sets in A then
v(UN 4;) = F(m) = YL, F(Xa,) and taking limits as N — oo
we see that v(UN_, 4;) converges to both Y72 F()a;) and F()/(J;o::;), $O
v(US2,4;) = 372, v(A)), and hence indeed v is a signed measure. Further-
more it is finite (i.e. [v(A4)| < oo for each 4 € A) and the argument above to
prove v(®) = 0 actually shows that v(E) = 0 whenever E € A with u(E) =
0, because the indicator function Xg of any set of measure zero is in the L?
class of the zero function. Thus E € A with u(E) =0 = v(E) = 0. Thus if
we let P, X \ P be a Hahn decomposition for vthenv =vL P +vL (X \ P)
andboth vy =vL P andv, = —v L (X \ P) are positive measures on .4 which
are AC with respect to p, hence by the Radon-Nikodym Theorem there are
A measurable functions g1, g, : X — [0,00) with v;(4) = [, g;dp, j = 1,2,
hence

(1 o) = F(T) = [gdn. Aed g=gi-g
By the linearity of each side of (1) we then have

(2) / pgdu = F(¢), forany simple function ¢.
X
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Next notice that if f € £7(u) then by a theorem of lecture we can find in-
creasing sequences ¥;,n; of non-negative simple functions with y; — fi (=
max{ f,0}) and n; — f_(= max{—f,0}) pointwise on all of X and hence
0<(fyr—vi)?» > 0and 0 < (fy —y;)? < f so by the Dominated Conver-
gence Theorem || f+ — ||, — 0, and similarly || /= —n; |, — 0. Hence we have
shown (with ¢; = ¥; —n;)

(3) f € LP(u) = 3 simple functions ¢; with || f — ¢; |, — 0.
If1 < p < oo, weapply (3) to f = fk, where
fi = (sgng)|g|¥?XG,, where Gy = {x e X :|g(x)| <k}.

In that case we can set ¢ = ¢; on each side of (2) where || fx — ¢i|, — 0 and
hence by taking the limit of each side as i — co we obtain

F(ﬁ)=/fkg=/ lg|" P du, k=1.2,....
X G
But F(fi) < IF I fill, = 1 FI1(fg, 1817 dp)'/ and hence

/Glgl”‘””dufllFll(/ 1817 du) VP,
k

Gy
hence, since 1 +¢q/p = ¢,
lgXeillg = 11l
Letting k — oo and using the Monotone Convergence Theorem we thus have
g € L9(n). In the case when p = 1, ¢ = oo the argument is similar except that
we use fr = (sgng)|g|®Xg,, where again G, = {x € X : |g(x)| < k}, where
Q > 0 1s arbitrary. Then using (2) as in the case p > 1 we get this time that

/ g2 dp < ||F||/ 1612 dye
Gy Gy

and by using Holder to give ka lg|€ du < (ka 1g]'T2 du)2/0+2) (u(Gy)V/(1+2))

we obtain Jis0)
([ terrean) ™" <y Fpa(xyore

Gk

and hence by letting O — oo we get (see Q.2 of hw7)
||gXGk||OO§||F”7 k:1727"'7

and hence ||g|lo < oo. Thus in either case p = 1, p > 1 we have proved
g€ Li(n),and for any f € £P(n) we can let ¢ = ¢; in (2) and use (3) to pass
to the limit, giving

/fng=F(f),
X
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so indeed (in both cases p = 1, p > 1) we have F(f) = T, (/). This completes
the proof in the case 1 (X) < oco.

Case 2: u 1s o-finite. Thus we assume 11(X) = oo and that there are p.w.d. sets
Bi, By,... € Awith u(Bj) < co. Then we can apply Case 1 to the measure
space (Bj, Aj, 1), where A; = {ANB; : A € A} and ; = pu|A; and with
F; in place of F, where F;(f) = F(f;) for f € £?(u;), where f; the £7 (i)
function defined f;|B; = f and f;|X \ B; = 0. Thus there is g? € £7(y;)
with [y fig; diu = F(f;), where g;|B; = g} and g;|X \ B; = 0. Thus

/ngj=F(X;f), fecll(n), j=12,....

Since the B; are p.w.d. this can be written
/);fXng = F(Xs,f), feLl(n), j=12,...,

where g|B; = g; for each j and g|X \ (U2, B;) = 0, and by linearity this in
turn gives

() [ Frop ng=FlGy 5 F) feLw). N =120,
X Jj=17J Jj=177
and (Cf. the argument used in Case 1) we then have
lgZxun_ g lle =IF]. N =1.2.....
and for ¢ < oo we can apply the monotone convergence theorem on the left to
give
gl = I1F] < oo.

Of course the same is trivially true in the case ¢ = oo because U, B; = X

and hence ||gX ~ B loo = llglloo- We can then let N — oo in () to conclude
i

F(f) = [y fgdu, so the proof is complete in Case 2.

Thus it remains to treat Case 3, the case when 1 < p < oo, u(X) = oo, and
when no o-finite hypothesis is assumed. To give the proof in this case we let

E={EcA:E=UR E; forsome E; € Awith u(E;) < oo Vj}.

Then for each E € £ we can apply Case 2 above to the measure space (E, Ag, g ),

where Ap = {ANE:Ae A} and pg(A) = u(ANE) foreach A € A, to give
a g% € L£9(ug) such that

/Efg% dug = Fg(f), feLP(ug),
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Where FE(f) = F(f})) Wlth fE S ACP(/«L) deﬁned by fE|E = f on E and
fE|X \ E = 0. Thus in fact

() fogE du=F(Xef), feLP(n), E €&,

where we use the notation gz = g% on E and gg = 0 on X \ E for each
E € &. Then as in Case 2 we have ||gg|, < || F|| for each E € &, so

a =supllgellq < oo
Eecg

and we can choose a sequence Ej, Es., ... € € with ||gg; [l; — «.

Now observe that E, H € £ with E C H = gy = gg a.e. in E which is easily
checked because (1) implies that [ f(gu—gE)du = 0foreach f € LP(u), so
we can choose f = sgn(guw—g£)|gn —gE|?? X g (which is an £7 (u) function),
and hence (since 1 + ¢/p = q)

/ lga — gel? = 0.
E

Thus
E.He&withE CH = |gely < lgnlly

with equality if and only if gz = 0 a.e. on X \ E. In particular ||gg; [l — «
implies ||gu;>o;1Ej lq =« andalso H € & with H D U2 | E; = gu = 0 ae. on
X\ (USL, E;), otherwise we contradict the definition of @. Since f € LP(u)
evidently implies Hy = {x € X : [ f(x)| # 0} U (USZ, E;) is in the collection
&, we must then in particular have g, = 0a.e.on X \ (U2, E;) and so, with

g:ng?';IEj’
F(f) =/ngdu v/ e £r(u),

and the proof is complete. O



