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Differentiability Theory for Functions and Measures

As a preliminary to the discussion of differentiation of functions and measures, we need the following
important covering lemma, which we state and prove in R” but which clearly has a natural extension
to metric spaces:

Lemma (5-times covering lemma). Let B be any collection of closed balls in R™ with the property
that UpepB is contained in a bounded set. Then there is a p.w.d. collection {B, (x;)}j=12,.. C B
such that UpepB C U2 Bsp, (). The subcollection { B, (z;)}j=1,,.. can in fact be chosen so that:

1
(%) B € B= 3j with BN B, (xj) # 0 and p; > §radiuSB.

Terminology: As in lecture, “p.w.d.” is an abbreviation for “pairwise disjoint” and here B,(y)
denotes the closed ball with center y and radius p > 0 while B,(y) denotes the corresponding open
ball.

Proof of the 5-times Lemma: Let Ry = sup{radius B : B € B}(< c0), and write B = U2 | By,
where B, = {B € B: 27%Ry < radius B < 27+ Ry}. We proceed to inductively select pairwise
disjoint subcollections My, C By as follows:

M is any maximal p.w.d. subcollection of B; (meaning contains a maximum number of balls
subject to the stated condition of being a p.w.d. collection). Assume now that k& > 2 and that
we have already selected M, for j = 1,...,k — 1. Then select M}, to be a maximal p.w.d.
subcollection of {B: B € By and BNE=0)VE € U?;ll/\/lj}. Of course we take My = () in case
{BeBr:BNE=0VE € U?;ll/\/lj} is empty. Now we define

M - Uzile

and observe that M is a countable p.w.d. collection by construction, so the balls in the collection M
can be written as a sequence {B,,(x;)};=12,.. of p.w.d. balls. We claim that in fact the additional
property (x) holds. Indeed if B € B then B € By, for some unique ky > 1, and we claim that in fact
then BNE # () for some E € U;?O:l/\/lj. Otherwise for kg > 2 we would have both that BNE = {) for

each ball E € My, and also BN E = () for each ball E € U?o:—lle which means that My, U {B}
is a p.w.d. collection of balls in By, which do not intersect any ball in the collection U?OZ_lle,
thus contradicting the maximality of My,. For ky = 1 the argument is even simpler: BN E = ()
for every E € M implies that M; U {B} is a p.w.d. subcollection of By, thus contradicting the
maximality of M;. Thus we have shown that B N B,(x) # 0 for some ball B,(z) € Ué?ozl./\/lj. But
then radius B,(z) > 2% Ry = 1217k Ry > lradius B. Thus B N By(z) # 0 and p > iradius B
which is (x). Now, since (x) evidently implies that B C Bs,(z), the proof is complete.

We have now the following important corollary of the 5-times covering lemma:

Corollary 1. Let B be any collection of closed balls in R™ with the property that UpepB is
contained in a bounded set, and suppose A C R™. If B covers A finely in the sense that for each
x € A and each p > 0 there is a ball B € B such that x € B and radius B < p, then there is a
p-w.d. subcollection {B,,(x;)}j=12,.. C B with the properties that UpepB C U;jBs, (x;) and

®) AN (UYL B,, (7)) C Uy 41 Ba, () for each N > 1.



Proof: The 5-times covering lemma can be applied to B, giving a p.w.d. subcollection of closed
balls {B, (%) };=12,.. C B1 such that

(1) B e B= 3j with BN B,,(x;) # 0 (and hence B C Bs,(z;)).

We claim that this sequence { B, (7;)};=12,... automatically has the additional property (f). To see
this, take any N > 1 and let z € A\ (Ué\’:prj (x)). Since R™\ (Ué-vlepj (x7)) is an open set and
since B covers A finely, we can certainly find a ball B € B with x € B C R™ \ (Uévlepj (x;)) and
hence for this B the j in (1) must be > N +1. That is, z € B C U2 11 By, (x;), which completes
the proof.

An important corollary of this is the following Vitali covering lemma.

Lemma (Vitali Covering Lemma). Let i be any outer measure on R™ such that all Borel sets are
p-measurable and such that there is a fized constant B € (0,00) with p(Bay(x)) < Bu(B,(z)) < oo
for each closed ball B,(x) (note that these hypotheses hold with p = Lebesgue outer measure X\ in
case f =2"), let A C R™ be bounded and let B be any collection of closed balls which cover A finely.
Then there is a p.w.d. subcollection {B, (x;)}j=12,. C B such that u(A\ (U;-Vlepj (x))) = 0 as
N — oco.

Remark 1: Actually the conclusion holds without the hypothesis that p(Ba,(r)) < Su(B,(x)),
provided that the collection B not only covers A finely, but actually that for each point z € A we
have balls B, (z) € B (i.e. balls in B with center at z) with p; | 0. This result (which is important
in geometric analysis) requires a more powerful covering lemma (the Besicovich covering lemma)
in place of the 5-times covering lemma, and we will not discuss it here.

Proof of the Vitali Lemma: Let U be an open ball containing A and let B; = {B € B: B C
U}. Evidently By still covers A finely, hence by the corollary above we can choose p.w.d. balls
By, (x1), Bp,(x2), ... € By such that

A\ (Uévlepj (z7)) C U2 N 41 Bsp, (25) for each N > 1.

Observe that for each j we have u(Bsp, (7)) < pu(Bsp,(x5)) < B3u(B,,(x;)) by definition of §.

So /’L(U;?.;N+IB5PJ' (17])) < Z;iNH N(B5pj (z7)) < B3 Z;iNH N(Bpj (CC])) = 53#( JQC:)NHBﬂj (373)) <
B3u(U) < oo, where we used the pairwise disjointness and p-measurability of the B, (x;). Thus
(U5 N1 Bsp, () — 0 as N — oo, and the proof is complete.

In the following lemmas f is an arbitrary function : [a,b] — R, and for x € (a,b) we let

Df(z) = limsupM, Df(x) = 1iminfM.
gz T—Y yr x—y
Notice that —oco < Df(x) < Df(z) < oo, and f is classically differentiable at = if and only if
—o00 <Df(z) = Df(x) < co. Also, Df(x) > 0if f is increasing.

Lemma 1. Ife > 0,8 € R, U C (a,b) is open, and if S C U is an arbitrary set such that
Df(z) > B at each point of S, then there are pairwise disjoint closed intervals {[zj,y;]}j=1, .~
such that

Uj [z, 5] €U, MS\UN [, y5]) <e
Bly; —xj) < f(yj) — f(zj), j=1,...,N.



Proof: We observe that by definition of Df, for every z € S we must have (z;—z) 7 (f(z;)— f(z)) >

B for some sequence z; — x such that I, ; C U for each j, where we let I, ; = [z,2;] if 2; > «
and I,; = [zj,2] if z; < z. Notice that then the collection Z = {I,; : x € S, j = 1,2,...}
covers S finely and each I, ; C U. Then by the Vitali covering lemma there are pairwise disjoint
intervals {[z;, y;]}j=1,.. v C Z such that A(S \ UJ 1z, yj]) < e. Since by definition we have

-----

f(y;) — f(x;) > B(y; — x;) for each j, this completes the proof.

Remark 2: Notice that if § > 0, a < b, and if f is increasing (i.e. a <z <y <b= f(z) < f(y)),
then we can apply the above lemma with U = (a, b) to yield p.w.d. intervals [z;,y;] such that
[zi,yi] C (a,b), B(yi —xi) < f(yi) — f(z;) and N(S N (a, b) \ (Ui[xs,vi])) < €. Assuming that we
order these p.w.d. intervals [z;,y;] so that y;—1 < x; for i € {2,..., N}, we then have
BA(S) < BA(S\ U] (55 y5)) + 52?[:1(%' — ;)

<pBe+ Zj:l( (yj) — f(z5))

< Be+ 330 (f(y;) = fyj-1) (using notation yo = 1)

=Be+ flyn) — f(21) < Be+ f(b) — fla),
which, since € > 0 is arbitrary, gives

BA(S) < f(b) = f(a).
Notice particularly that if we take S = {x € (a,b) : Df(x) = +o00} then we can apply this for each
B > 0 and hence conclude that A\(S) = 0, i.e.
f :[a,b] = R increasing = Df(z) < oo, Ma.e. x € (a,b).

Observe that Lemma 1, with —f in place of f and § = —«, implies:

Lemma 2. Ife > 0, € R, U C (a,b) is open, and if S C U is an arbitrary set such that
Df(x) < a at each point of S, then there are pairwise disjoint closed intervals {[x;,y;]}j=1,..N
such that

Uj [, y5] CU,  MS\Ujlry, ys]) <e
fly;) = fxg) <aly; —x5), j=1,...,N.

We can now easily prove the following important differentiability theorem for increasing functions:

Theorem 1. Let f : [a,b] — R be an increasing function. Then f is differentiable \-a.e. in (a,b)

fW)—f(z)
e
to be e.g. zero on the set of measure zero where f is not differentiable) is a non-negative integrable

(i.e. lim,_, exists and is real for A-a.e. x € (a,b)). Furthermore the derivative f' (defined

function and

b
| roa< ) ).
Proof: Let T = {x € (a,b) : Df(x) > Df(z)}. Observe that (since Df(x) > 0)

(1) T = U0<o¢<ﬁ7 a,Brational Soeﬁ)

where Sap = {z € [a,b] : Df(z) > B> a > Df(z)}.

Now let € > 0, 0 < o < /3, and choose an open set U C (a,b) with Sog C U and A(U) < A(Sap) +e.
Then we can apply Lemma 2 with S = S,3; this gives p.w.d. intervals [z;, ;] with f(y;) — f(x;) <
a(y; — ;) and Us[z;, y;| C U, so that 37, (y; —2;) < A(U) < A(Sap) +€ and AM(Sap \ (Ujlz5,95]) <e



Then we apply Remark 2 (following Lemma 1) with S,s N (2;,v;) in place of S and with (z;, y;)
in place of (a, b), whence SA(Sap N (x5, y5)) < f(y;) — f(z;) < a(y; — x;) for each j. Then

BA(Sap O [zj, yj]) < f(y)) = fzg) <aly; —x5), j=1,...,N,
and hence summing on j we have
BA(Sas N (UM [, 95]) < a0, (5 — 25) < aA(U) < aX(Sap) + e,
and since A(Sqs \ (Uj[z},y;])) < € we thus obtain
BA(Sap) < aX(Sap) + (o + B)e.

Since € > 0 is arbitrary we thus conclude SA(Sa5) < @A(Sqg), so that A(Sys) = 0 for each o < S,
whence by (1) we have A\(T") = 0.

Keeping in mind that Df(x) < oo a.e. x € (a,b) by Remark 2, we have thus proved that D f(x) =
Df(z) < oo for a.e. € (a,b), which is the same as saying f’ (the classical derivative of f) exists
for a.e. z € (a,b), as required.

To prove the last part of the theorem, we first extend f to all of R by defining g(z) = f(z)
for z € [a,b], g(x) = f(a) for z < a, and g(z) = f(b) for z > b. Then note that ¢g'(z) =
limy, 0o n(f(z + 1/n) — f(z)) for a.e. x € R, and hence ¢’ is a non-negative Lebesgue measurable
function on R, assuming we define it to e.g. be zero on the set of measure zero where g is not
differentiable, and of course ¢’ = f’ a.e. on (a,b). Also by Fatou’s lemma we have

b b
/ fie)dt < linrr_lgoréf/ n(g(t+1/n) — g(t)) dt.

But evidently f;g(t +1/n)dt = fbill//gg(t) dt, so f;n(g(t +1/n) —g(t))dt = n be/n g(t)dt —

a

nfaa+1/"g(t) dt < f(b) — f(a), and hence

b
/ F(t)dt < £(b) — f(a)
as claimed.

Next we want to discuss Lebesgue’s theorem on differentiation of the integral in R™. As a key
preliminary, we need the following lemma.

Lemma 3. Suppose f : R™ — [0,00) is locally Lebesgue integrable on R™ (i.e. A\-measurable and
integral over each ball is finite), and suppose E C R™ is A\-measurable. Then

limp_"/ f(x)dx =0 for A-a.e. £ € R" \ E.
2 By(§)NE

Proof: The proof as a simple application of the Vitali covering lemma.

Let k € {1,2,...}, &« > 0, let K be any compact subset of E N Bj,(0) (B,(0) the open ball of radius
k and center 0),

Sa:{feék(O)\E:limsupp"/ f(z)dx > a}.
pl0 Bo(&)NE



Then for each { € S, there is a sequence p; | 0 with pj_" pr_(s)mEf(a:) dxr > « for each j, and
J

hence B = {B,(¢) C By(0)\ K : £ € S, and w;, ' p™" pr(g)mE f(z)dx > a} covers S, finely, so by
the Vitali covering lemma there are p.w.d. balls B,,(&;) € B with

A(Sa \ (U521 By, (&5))) = 0 and / f(z)dx > awyp}’, i=1,2,....
Bpi(fi)mE

Then by subadditivity of A
aA(Sa) < aX(Sa \ (UjZ1 By, (24))) + a2, A(By, (§5))

<y, f(x) do = / J(@)de < / f(x) da,
By, (6;)NE U2, By, (&)NE Br(0)NE\K

Now, as proved earlier, we can find an increasing sequence K; C Bk(O) N E of compact sets with
AMB(0) N E\ K;) — 0, so we have actually proved

a(Sy) < /Rn Xék(o)mE\Kjf(@ dx

and the right side — 0 as j — oo by the dominated convergence theorem, hence A(S,) = 0. Thus
{€ € BL(0)\ E : limsup, o p~" fB,,(g)mE f(x)dz > 0} = U32,S)/; is a countable union of sets of
measure zero, hence has measure zero, so we have proved

lim p”/ f(x)dz =0 for la.e. £ € B(0)\ E.
0 By(§)NE

Since k is arbitrary this proves the lemma.

The following corollary is important:

Corollary 2. Let E C R" be A-measurable. Then
0 for A-a.e. £ € R"\ FE
liy o ACE B (€)= 4 © 20N € R
pl0 1 for A-a.e. £ € E.

Proof: To get the first conclusion simply apply Lemma 3 with f = 1. For the second conclusion
observe that 1 —w, 1 p™"N(EN B,(€§)) = w,, 'p7"A(B,(£) \ E) and so Lemma 3 with f = 1 and with
R™\ E in place of E gives the required result.

The Lebesgue differentiation theorem is then as follows:

Theorem 2. Let f : R™ — R be locally Lebesgue integrable (i.e. A\-measurable and integral of |f]
over each ball is finite). Then

: : -1 _-n _ _ n
(i) lplfgwn P /Bp(g) f(x)dx = f(§) for A-a.e. £ €R
(ii) lgfolpfn /Bp(g)‘f(az) — f(&)|dz =0 for A-a.e. £ €R™.

Remarks (a) Notice that of course (ii) = (i) because
w17 iy 0 F(@) o — FE)] = o 5 [y (@) — £(€)) dal < oo™ [ o 1£(@) — £(€)] da

5



but in the proof we first establish (i) and show that (ii) follows directly from it.
(b) The points £ where the limit in (ii) is valid are called the Lebesgue points of the function f.

Proof of Theorem 2: For each 1 = 1,2,... we have

R" = U2 _ A;j, where Ajj ={x e R": (j —1)/i < f(x) < j/i}.

j=—o00

Notice that then for each i = 1,2,... the sets A;;,7 = 1,2,..., are p.w.d. A-measurable, and

. /Bp(f) ) de = /Bp(f)ﬂAij Jle)de /Bp(f)\Aij ) de.

and of course

W T ABNE) A A — 1)/i < o / f(@)de < j/i,
B, (&§)NA;;

hence (1) implies

(2) wy'pTPABL(E) NAG) (G —1)/i < Wﬁlp_n/

f@)de—wtp™ [ f@)de<ifi
B, (€)

Bp(&)\Aij

By Lemma 3 (with £ = R™ \ A;;) and Corollary 2 (with E = A;;) we then have

(3) (j—l)/igliminfwglp_”/ f($)d$§limsupwglp_"/ flx)de < j/i
pl0 By(¢) plo By (€)

for M-a.e. £ € A;j, which means (3) holds for each £ € A;; \ Ej;, where A(E;;) = 0. Since (j—1)/i <
f(&) <j/ifor all £ € Ay, (3) implies

(4) f(f)—l/igliminfwglp_"/ f(m)dwglimsupwglp_”/ flx)de < f(§)+1/i
pi0 By(¢) pl0 By(&)

for each & € A;; \ E where E = UPe ; Upe _ o Eke has measure zero and does not depend on the

indices 1, j. Since U?’;,OoAij = R" we thus have

f(f)—l/igliminfwglp_”/ f(x)d$§1imsupwglp_”/ flx)de < f(§)+1/i
P Bp(8) pLO Bp(€)

for every : = 1,2,... and every £ € R™\ E, and hence

liminfwglp_"/ f(m)dleimsupwglp_"/ flz)de = f(§), VEeR"\E,
puo By(€) plo By(§)

so (i) is proved.

To prove (ii), let g1, g2, ... be any countable dense subset of R. Applying (i) to |f(z) — g;| we have

. ~1 —n o . n .
g wnp /Jsp<s>'f<x>—q]\—|f<s> gjl, V&€ €R™\ B},

where A(E;) = 0, hence

(5) timo o [ F(@) g = 1£©) - g, Vi= L2 and VE R\ E,
PO By(€)



where £ = U2, Ey, so that A(E) = 0. If ¢ > 0 and £ € R" \ E, we can select j such that
|f(&) — gj| < e, and hence (5) gives

limsupwnlp"/ |f(z) — f(&)] <2eVe>0,
pi0 By(€)

so lim,jgw, tp™" pr(ﬁ) |f(x) — f(&)| =0 for each £ € R™ \ E, which is (ii).

The Lebesgue theorem (Theorem 2) has an important corollary in the case n = 1:

Corollary 3. Ifa,b € R with a < b and if f : [a,b] — R is Lebesque integrable, then the function
F(x) = [T f(t)dt is differentiable a.e. on (a,b) and F'(z) = f(z) for a.e. x € (a,b).
Proof: If z € (a,b) and 0 < |h| < min{b — x,x — a} then

z+h

x+h
W G+ )~ F@) = )l = |0 [ p@de- g = 0t [ (0 - f@)
x xT
. z+|h|
< |n- / ECESCIL:
which — 0 as h — 0 for a.e. z € (a,b) by part (ii) of Theorem 2.
The above corollary will play an important role in the theory of absolutely continuous functions
on [a,b] which we want to develop below, but first we need to introduce the notion of bounded
variation (BV):
Let P:axp=a <z <xg<---<xy =Db be any partition of [a,b], f : [a,b] = R, and define
N
Trp =Y |flx;) = flzj1)]
j=1
Tf = Sup Tf773,
where the sup is over all partitions P of [a,b]. Ty is called the total variation of f over the interval
[a, b].
Observe that Ty = Ty p = f(b) — f(a) for each partition P if f is increasing on [a, b].
Definition: f : [a,b] — R has bounded variation (BV) on [a, b] if T} < oo.

Lemma 4. f:[a,b] = R is BV on [a,b] <= [ can be written as the difference of two increasing
functions; i.e. there are increasing fi1, f2 : [a,b] — R such that f(z) = fi(x)— fa(z) for all x € [a,b].

Proof “=": For any partition P:a =xg < 1 < x9 < --- < zxy = b we define

N N
Prp=> (flx;) = fl@j-1)4, Nep =Y _(f(x) = flwj1))-,
=1 =1
where we use the notation a4y = max{a,0}, a_ = max{—a, 0}, so that

N

Prp—Npp =3 (f(x;) = f(xj-1)) = F(b) = f(a)
=
]N

Prp+ Npp =Y |f(x;) = f(zj-1)| = Typ.
j=1



Observe that then supp Ty p < 00 <= supp Pyp < 00 <= supp Nyp < oo and
Sup Typ <oco= f(b) — f(a) = Sup Prp — Sup Ny.p.

By applying the same argument on the interval [a, z] (where x € (a,b]) we have
f(:c):f(a)+f1(fc)—f2(x), l’E[a,b],

where fi (SL’) = SUDPparitions P of [a,z] Pf\[a,x},’P and fz(l‘) = SUDparitions P of [a,z] Nf|[a7:v],'P for z € (a7 b]
and f1(a) = fa(a) = 0 are non-negative increasing functions on [a, b], provided supp Tt p < oo (i.e.
provided f is BV on [a, b]).

Proof “<”: f = fi — fo with fi, fo : [a,b] = R increasing = Typ < Ty, p + Tt p = fi(b) —
fi(a) + fa(b) — fa(a) for each partition P of [a,b], so

Ty < f1(b) = fi(a) + f2(b) — fa(a) < .

Next we want to introduce the concept of an absolutely continuous (AC) function:

Definition: f : [a,0] — R is AC if for each £ > 0 there is § > 0 such that SN | [f(y;) — f(z:)| < €
whenever [z1,y1],...,[xN,yn] are p.w.d. closed intervals in [a, b] with Zfil(yl —x;) < 0.

Remarks: (1) f:[a,b] = Ris AC = f is uniformly continuous on [a, b], as one sees simply by
using the above definition with just one interval (N = 1).

(2) For any f:[a,b] = R, fis AC = fis BV.

To check (2) we let § > 0 be the § as in the definition of AC corresponding to ¢ = 1, and let
Q:a=yy <y <--- <yg = b be any partition of [a,b] with y; —y;—1 < foreach j =1,...,Q.
Now let P be any partition of [a, b] and let P = PUQ. Since refinement evidently does not decrease
the value of T p» we then have

Q
Trp < Trpoe < Ty, 1 as(Pu@iyy—1ws] < O THys-1ay) < @
j=1

since Ty, _, 4, < 1 (because y; —y;—1 < J) foreach j =1,...,Q.

We now state a theorem which completely characterizes AC functions, as follows:

Theorem 3. Let f : [a,b] — R. Then

fis AC on [a,b] <= 3 a Lebesgue integrable g on [a,b] with f(z) = f(a)+ [ g(t) dt Yz € [a,b)].
Before we begin the proof, we need a simple lemma about non-negative integrable functions on an
abstract measure space (X, A, u).

Lemma 5. Let (X, A, u) be any measure space and f : X — [0,00) any p-integrable function.
Then for each € > 0 there is a 6 > 0 such that [, fdu < e for all A € A with p(A) <.

Proof: For N = 1,2,..., let fy = min{f, N}, so that fy is an increasing sequence of non-
negative A-measurable functions which converges pointwise to f on X, and hence by the monotone
convergence theorem we have

/(f—fN)%OasN%oo.
X

Thus for given £ > 0 we can select N such that | X ( f- fN) < £/2, and on the other hand trivially
for any set A € A we have [, fxv < Nu(A), and so

/AfZ/AfN+/A(f—fN)§N,LL(A)+/X(f—fN)SNH(A)+5/2<5

8



provided p(A) < /2N, and so the lemma is proved with 6 = ¢/2N.

Proof of Theorem 3 “<=”: We are given f(z) = )+ [T g(t)dt where g : [a,b] — R is
Lebesgue integrable on [a,b]. According to Lemma 5, for a given € > 0 we can choose 6 > 0
such that if A is a A-measurable subset of [a,b] with A(A) < & then [,|g|d\ < e. So, with
this 4§, let [x;,y;],7 = 1 N be any p.w.d. intervals in [a,b] with Zfil(yz — ;) < 6. Then
Zi]\il [f(ye) = )] = 2232 1 | fyz t)dt| < i\il f[xi,yi] lg(t)]dt = fufvzl[%yi] lg(t)]dt < &, so we
have checked the definition of AC.
Proof of Theorem 3 “=>": Recall from the above discussion that AC = BV = f = f; — fs where
f1, f2 are increasing on [a, b], so by Theorem 1 we have f’is Lebesgue integrable, so to complete the
proof we just need to show that f(x f f'(t) dt is constant on [a,b] (then we have the required
conclusion with g = f’). So let
F(x) = f(z) - [, f'(t)dt
and observe that by Corollary 3 we have F’'(z) = 0 for A-a.e. x € (a,b). Thus with
S ={z € (a,b) : F'(z) exists and = 0}
we have A\([a,b] \ S) = 0 and of course, by definition of F’(z) = 0, for any given € > 0 the set S
is covered finely by the collection B of closed intervals [z,y] C (a,b) such that |F(y) — F(z)| <
e(y — ). Then by the Vitali Covering Lemma, for each £,6 > 0 there are p.w.d. closed intervals
[z1,91],- -, [N, yn] C (a,b) with
Mla, B\ (U [z, 950)) = S\ (U [z, 95])) < 6
|F(yl)_ (xz)|§5(yz_xl)v i=1,...,N.
Without loss of generality we can assume that these intervals [z;,y;] are labelled so that a < z1 <
Y1 < To <y <zy <yn <b, and then

[a, 0]\ (U (22, :)) = UR_oluk, 2x+1] and hence S0 (zrr1 — yr) < 6,

where for convenience of notation we set yg = a and zy4+1 = b.

Now f is given to be AC and f f'(t) dt is AC by the proof of “<” above, so F is AC, and hence
for any given € > 0 we can choose the above § > 0 such that Zk o F(zry1) — (yk)| < ¢ (notice
this inequality holds by definition of AC because S p_ o@r1 — wk) = Ma, 0] \ UN, [25,]) < 0).
Then, with 20 = QA,2] = X1,22 = Y1y.--9y22N—-1 = TN, 22N = YN, R2N+1 = b, we have

|F(b) = F(a)| = |35 (Fz) = F(zi-1))]
= ‘Zi:l( (i) — F@Z)) + Zgzo (F(kaﬂ) - F(yk))‘

<XV (yi—wi)+e<(b—a+1)e

Thus, since € > 0 is arbitrary, we have proved F(b) = F(a). Since we can repeat the proof on the
interval [a, x] for any = € (a, b, this shows that F'(x) is constant (equal to f(a)) on [a,b].

We conclude this supplement by showing that the method used to prove Lemma 1 and Lemma 2
above easily modifies to give the following theorem about differentiation of locally finite Borel
measures in R"™.

Theorem 4. Let u be a Borel measure on R™ which is finite on bounded Borel sets. Then the
density ©,(x) = lim, o ”(%p(ff)) exists and is real for \-a.e. x € R™.
Proof: We have to show that {z : ©,.(z) < ©}(z)} has measure zero and also that O}, (r) < oo

for A-a.e. z € R", where O}, (z) = limsup,, % and O, (z) = liminf iggzgxgg
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First observe that if # > 0, U C R" is a bounded open set, and if and S C {z € U : ©],(z) > B},

then (since x € S = iEBpJ ExQ > (3 for some sequence p; | 0) the set of closed balls B,(x)

such that B,(x) C U and /J,( »(x)) > BA(By(x)) covers S finely. Hence by Vitali (for Lebesgue
measure), there is a p.w.d. collection B, (x;) C U such that u(B,(x;)) > BA(B,,(x;)) and A(S'\
(U;-Vlepj (xj))) = 0 as N = oo. Thus if € > 0 there is N such that

BAS) < BA(S N (U1 By, () + BA(S \ (UjL1 By, ()
< 52?[:1)‘(5 N By, (x5)) + BAS \ (Uj'vlepj ()
< Z?:W(Bpj (z7)) + Be = w(U; By, (x5)) + Be.

Thus since € > 0 is arbitrary and since U; By, (z;) C U we thus have
(1) BA(S) < u(U).

Notice that in particular if we take S to be the set of points z in the ball U = Bj(O) where
©7,(z) = oo then we can apply this with each 3, thus implying that A(S) = 0. Thus (since j is
arbitary) we have

(2) 0, (z) <oo, Aae z€R"
Next observe that

{z eR": @M*( ) < @*( )} = ,B rational,0<a<g,ke{1,2,.. }Sa,ﬁ,k

where
Sapr={r €R":[z] <k, Ou(r) << B <O ()}

Now let V' be an open set such that V' O S, 5 and such that A(V') < A(Sq,5%)+¢, and let B be the
set of closed balls B,(x) C V such that u(B,(z)) < aX(B,(z)). Then evidently B Covers Sa, g,k finely,
and so by the Vitali lemma there are p.w.d. balls B, (z;) in B with A(Sa,sx \ ( "1 By (75))) = 0
as N — oo, and for each j

(B, () < u(By, (x;)) < aA(By, ().

But then for any given € > 0 we can select NV so that A(Sagk \ ( Bp] (x5))) < € and then for
each j =1,...,N use (1) with S, g1 N Bp]. (x;) in place of S and U = Bpj( xj), giving

BA(Sa,6.k N (U1 By, (25))) < 3301 BM(Sap6 N By, (5))
< N (B, (7)) < @ 3 A(By, (x7)) < @MU, By, (x;))
< a\(V) < aX(Sapk) + ac.

Since A(Sa.gk \ ( " B,;(x5))) < ¢, this gives
BA(Sa,pk) < aX(Sa,pk) + (a+ Be,
and letting € — 0 we thus have
BA(Sapk) < aX(Sapk) < 00;

that is, A(Sq g,x) = 0 as required.
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